7,686 research outputs found

    Darwinism and Organizational Ecology: A Reply to Reydon and Scholz

    Get PDF
    In an earlier article published in this journal I challenge Reydon and Scholz's (2009) claim that Organizational Ecology is a non-Darwinian program. In this replay to Reydon and Scholz's subsequent response, I clarify the difference between our two approaches denoted by an emphasis her on the careful application of core Darwinian principles and an insistence by Reydon and Scholz on direct biological analogies. On a substantive issue, they identify as being the principle problem for Organizational Ecology, namely, the inability to identify replicators and interactors "of the right sort" in the business domain; this is also shown to be easily addressed with reference to empirical studies of business populations.Peer reviewedFinal Accepted Versio

    Maximum Lift-to-drag Ratio of a Slender, Flat-top, Hypersonic Body

    Get PDF
    Maximum lift-drag ratio of slender, flat top, hypersonic body assuming modified Newtonian pressure distribution and constant surface averaged skin friction coefficien

    Untangling the Conceptual Isssues Raised in Reydon and Scholz’s Critique of Organizational Ecology and Darwinian Populations

    Get PDF
    Reydon and Scholz raise doubts about the Darwinian status of organizational ecology by arguing that Darwinian principles are not applicable to organizational populations. Although their critique of organizational ecology’s typological essentialism is correct, they go on to reject the Darwinian status of organizational populations. This paper claims that the distinction between replicators and interactors, raised in modern philosophy of biology but not discussed by Reydon and Scholz, points the way forward for organizational ecologists. It is possible to conceptualise evolving Darwinian populations providing the inheritance mechanism is appropriately specified. By this approach, adaptation and selection are no longer dichotomised, and the evolutionary significance of knowledge transmission is highlightedPeer reviewe

    Collective pinning of the vortex lattice by columnar defects in layered superconductors

    Full text link
    The mixed phase of layered superconductors with no magnetic screening is studied through a partial duality analysis of the corresponding frustrated XY model in the presence of random columnar pins. A small fraction of pinned vortex lines is assumed. Thermally induced plastic creep of the vortex lattice within isolated layers results in an intermediate Bose glass phase that exhibits weak superconductivity across layers in the limit of weak Josephson coupling. The correlation volume of the vortex lattice is estimated in the strongly-coupled Bose-glass regime at lower temperature. In the absence of additional point pins, no peak effect in the critical current density is predicted to occur on this basis as a function of the Josephson coupling. Also, the phase transition observed recently inside of the vortex-liquid phase of high-temperature superconductors pierced by sparse columnar defects is argued to be a sign of dimensional cross-over.Comment: 16 pages, 1 figure, account of transition to ``nanoliquid'' in BSCCO, to appear in PR

    Torsion formulation of gravity

    Get PDF
    We make it precise what it means to have a connection with torsion as solution of the Einstein equations. While locally the theory remains the same, the new formulation allows for topologies that would have been excluded in the standard formulation of gravity. In this formulation it is possible to couple arbitrary torsion to gauge fields without breaking the gauge invariance.Comment: AMS-LaTeX, 25 pages. Appendices have been eliminated and the necessary concepts have been inroduced in the text. We have added some reference

    N=2 supergravity models with stable de Sitter vacua

    Get PDF
    In the present talk I shall review the construction of N=2 supergravity models exhibiting stable de Sitter vacua. These solutions represent the first instance of stable backgrounds with positive cosmological constant in the framework of extended supergravities (N >=2). After briefly reviewing the role of de Sitter space--times in inflationary cosmology, I shall describe the main ingredients which were necessary for the construction of gauged N=2 supergravity models admitting stable solutions of this kind.Comment: Prepared for Workshop on the Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions, Leuven, Belgium, September 13-19 200

    Weakly nonlinear theory of grain boundary motion in patterns with crystalline symmetry

    Full text link
    We study the motion of a grain boundary separating two otherwise stationary domains of hexagonal symmetry. Starting from an order parameter equation appropriate for hexagonal patterns, a multiple scale analysis leads to an analytical equation of motion for the boundary that shares many properties with that of a crystalline solid. We find that defect motion is generically opposed by a pinning force that arises from non-adiabatic corrections to the standard amplitude equation. The magnitude of this force depends sharply on the mis-orientation angle between adjacent domains so that the most easily pinned grain boundaries are those with an angle between four and eight degrees. Although pinning effects may be small, they do not vanish asymptotically near the onset of this subcritical bifurcation, and can be orders of magnitude larger than those present in smectic phases that bifurcate supercritically

    T-duality in the weakly curved background

    Get PDF
    We consider the closed string propagating in the weakly curved background which consists of constant metric and Kalb-Ramond field with infinitesimally small coordinate dependent part. We propose the procedure for constructing the T-dual theory, performing T-duality transformations along coordinates on which the Kalb-Ramond field depends. The obtained theory is defined in the non-geometric double space, described by the Lagrange multiplier yμy_\mu and its TT-dual y~μ\tilde{y}_\mu. We apply the proposed T-duality procedure to the T-dual theory and obtain the initial one. We discuss the standard relations between T-dual theories that the equations of motion and momenta modes of one theory are the Bianchi identities and the winding modes of the other

    Edge dislocations in crystal structures considered as traveling waves of discrete models

    Get PDF
    The static stress needed to depin a 2D edge dislocation, the lower dynamic stress needed to keep it moving, its velocity and displacement vector profile are calculated from first principles. We use a simplified discrete model whose far field distortion tensor decays algebraically with distance as in the usual elasticity. An analytical description of dislocation depinning in the strongly overdamped case (including the effect of fluctuations) is also given. A set of NN parallel edge dislocations whose centers are far from each other can depin a given one provided N=O(L)N=O(L), where LL is the average inter-dislocation distance divided by the Burgers vector of a single dislocation. Then a limiting dislocation density can be defined and calculated in simple cases.Comment: 10 pages, 3 eps figures, Revtex 4. Final version, corrected minor error
    corecore